Chinese Remainder Theorm

* If Gco(a,b)=1; +(r,s) = 2 in mod(ab) buch that;

 $x = r \pmod{a}$ and $x = S \pmod{b}$

Thea; Do Skippy clock with 1^{th} clock's hand at arbitrary k.

Now; after 'a' steps it will be back and 2^{nd} will be at $[a]_b$.

Repeating; values taken by $b = [ta]_b$.

If $Gco = 1 \Rightarrow all positions covered$. $Gco = 3 \Rightarrow multiples of 3' only covered in b'$

- * By Bezout's; x = bvr + aus where au+bu = 1
- Now, because x = (r,5) uniquely; x = (rem(x,a), rem(x,b))

Co-ordinate rep. can be used to do Anthmetic

- 1) $(r,s) +_m (r',s') = (r +_a r', S +_b s') additive inverses$
- 2) (r,5) ×m (r',5') = (r xa r', S xbS') Mult. inverses

* CRT for arbitrary

 $m = \alpha_i \cdot \alpha_2 \cdot ... \quad \alpha_n \quad \text{and} \quad \text{Gicp}(\alpha_{i,1}\alpha_{i,1}) = 1 \quad \text{for any} \quad \left\{r_{i,1}r_{a,2} \cdot ... r_{n,n}\right\} \text{ where } \quad r_i \in [0, \alpha_i)$ $\Rightarrow \exists j \text{ so such that } x \equiv r_i \pmod{\alpha_i}$

- Zm 30 set of elements of Zm with multiplicative inverse.

₩a ∈ Zn; gcd (a,m)=1

- · Elements of Zm = "Units", O can never be a unit!
- number of units for $p^{k} \Rightarrow p^{k} p^{k-1}$ $p = prime; k \neq 1$ $\Rightarrow (p-1)$ when k=1

By Extended CAT; $m = (r_1, r_2, ..., r_n)$

 $\Rightarrow \text{Num}(m) = \text{num}(r_1) \circ \text{num}(r_2) \cdots$ $= \left[P_{N-1}^{N-1} \left[P_2^{N-1} - P_2^{N-1} \right] \cdots \right]$ $= \left[P_{N-1}^{N-1} \left[P_2^{N-1} - P_2^{N-1} \right] \cdots \right]$

- * Euler's Totient Function \$(m)
 - By defn. | Z* = p(m)

if $acd(ab)=1 \Rightarrow \phi(ab)=\phi(a)\phi(b)$ multiplicative functions!

- We can also prove if a = Zn Z is => b = Zn S.t ab=0

- * Arithmetic Properties
 - 1) if $\alpha \in \mathbb{Z}_m^*$; $\alpha' \in \mathbb{Z}_m^*$
 - 2) Y(a,b) EZm ab EZm Closure
 - 3) $\forall a \in \mathbb{Z}_{m}^{*} = \mathbb{Z}_{m}^{*} \text{Prove by taking a, } a^{-1} \text{ and Show}$ $a \neq \mathbb{Z} = \mathbb{Z} \mathbb{Z} = \mathbb{Z}$
- * Exponentiation; a∈Zm, d∈Zt ad a a xm...a (d times)

-not in modular form

- For I'm; we can extend to d= 2 with a=1; a=d=(a-1)d

* EULER'S TOTIENT THEORM!— $\phi(m)$ is not smallest d sit $a^d = 1$ $\forall a \in Z_m^*$; $a^{\phi(m)} = 1 \pmod{m} \longrightarrow m = p \text{ format's little theorm}$ Proof! $Z_m^* = \{x_1, x_2, ..., x_n\}$ where $n = \phi(m)$ $u = x_1 \cdot x_2 ...$ and $\omega = (ax)(ax_2) ...$ where $a \in Z_m^*$ $\Rightarrow \omega = a^n u$ However; $\omega = u$ (Closure prop.) $\Rightarrow a^n = 1$

Important fact: If p is prime; If such that $\forall a \in \mathbb{Z}_p^* \ a = g^k \ (k is some int.)$

Stated w/o proof

- 9 is called "Generator of Zp" or "a primitive most of Zp"
- We can write \mathbb{Z}_p^* as $1, g, g^2, \dots g^{p-2} \Rightarrow g^{p-1} = 1$ by ETT.

However, notice that the exponents form a Zp-1

- Getting Zp if Zp, in known in easy; but reverse is not.
- Discrete log! given 'g' for Zp and KEZp; the value of aEZp, S.t ga=k

Lecture-3H

Monday, September 7, 2020

4:50 AM

- For
$$\alpha \in \mathbb{Z}_m^*$$
; can see that $\alpha^c = \alpha^d$ iff $c = d \pmod{p(m)}$ $\gcd(e, p(m)) = 1$

1) Define e^{th} root; given x^e find $e \Rightarrow Pf \exists d s \cdot t \ ed = 1 \pmod{p(m)}$ then $(x^e)^d = x$

$$-\alpha^{1/e} \max \max \max \sum_{m=1}^{n} \max \max \sum_{m=1}^{n} \max \max \sum_{m=1}^{n} \max \sum_{m=1}^{$$

- * Exporentiation, inverse va EEA * (Note in Sep. Secon maybe)
- If m is a product of distinct primes; $\forall \alpha \in \mathbb{Z}_m$ (not $\alpha \in \mathbb{Z}_m^*$) to restriction)

* Squares:

- Notice that for all m>2; GCD (pm,2)=2 > Not well defined,
- Elements in Zm of the form 22 are called Quadratic Residues.

$$Arr Considering \mathbb{Z}_p^* ; all g^{2n} are quadratic Residues. $\Rightarrow |\overline{\mathbb{Q}R_p^*}|$

$$Arr Z \in \mathbb{Q}R_p^* \leftrightarrow Z^{(p-1)/2} = 1$$$$

In Zp; (0e) le has Goole,p-1) valuas

Wednesday, September 9, 2020 5:47 AM

- Let A and B two sets. AGB +> AGB

- Predicates can be used to define sets and vice-versa!

- From above; we can also define Set operations in terms of prop. calculus.

1)
$$\overline{S} \Rightarrow P_{n}(\overline{S}(x)) = \neg P_{n}(S(x))$$

2) $S \cup T \Rightarrow P_{n}S(x) \vee P_{n}T(x)$

3) $S \cap T \Rightarrow P_{n}S(x) \wedge P_{n}T(x)$

4) $S - T \Rightarrow P_{n}S(x) \wedge \neg P_{n}T(x) = P_{n}S(x) + P_{n}T(x)$

5) $S \wedge T \Rightarrow P_{n}S(x) \oplus P_{n}T(x)$

All of Propositional Calculus
holds

- SET can be written on $\forall x \ x \in S \rightarrow x \in T$; S = T is $\forall x \ z \in S \leftrightarrow x \in T$ $\neq \overline{CS}$
- * Inclusion Exclusion :

* Cartesion Product !-

4 RxSxT + (RxS)xT but Essentially the same.

Lecture-4B

Saturday, September 12, 2020 12:23 PM

Relations '-

homogenous

- A predicate for S×S ⇒ Likes (2.17), (2.17) ∈ S×S 4 Subset of S×S for which predicate is true

- Represented as zRy.
- All set operations apply to Relations as well.
- * Converse !- RT = {(2,3) | (1,3) ER}
- Reflexive: +xES; (x,x) ER Diagonal of book matrix=True

 Irreflexive: +xES; (x,x) &R No edge to self
- Symmetric: ∀(x,y) ∈ S×S; (x,y) ∈ R ∧ (y,x) ∈ R | R=R^T for bood

 Asymmetric: + If (x,y) ∈ R then (y,x) ∈ R. No double edges → x,y need not be distinct!

 Anti Symmetric: if (x,y) ∈ R and (y,x) ∈ R then x=y > what we would mean.
- Transitive :- if aRb and bRc, then aRc. Intransitive = Not transitive

 * RoR⊆R of also; Yk>1; RK⊆R
- · Equivalence = Reflexive, Sym., transitive
- * Given R: we defire!

(1) Reflexive Closure - Smallest R'2R 5.t R' is reflexive

- (1) Reflexive Closure Smallest R' ? R S. E R' is reflexive
- (2) Symmetric Closure Smallest R' 2R st R' is symmetric All unique

- (3) Transitive Closure -
- transi the.
- * Equivalence Class: Equivalent.
 - If Eq(x) \(\text{Eq(x)} \) = Eq(x) = Eq(x) = Eq(x) \\
 Also; Eq(x) \(\text{Eq(x)} \) = S

- * A transitive Anti Symmetric Relation is Acyclic transitive Symmetric Relation is Cyclic.
- * Partial Order Sets !-
 - We know that transitive-Reflexive-Symmetric ⇒ Equivalence =
 - Similarly; Transitive-Reflecic-ArtiSymmetric > Partial orders ≥ ≤
 - Trans' Live + acyclic \iff Postially ordered (in case of transitive)

 Of Reflexive, Po; if irreflexive, SPO.
 - Poset is represented like (S,R) :- R is the relation being applied over S
- * Maximal & Minimal >
 - x is maximal for (S,R) iff \$\frac{1}{2} y \in S {\frac{1}{2}} \text{ such that } y R \text{ } \frac{1}{2} \text{ for ease } \frac{1}{2} \text{ } \frac{1
 - Need not be unique, or even existent.

However; if S is finite, then they def. Exist! - Will use directly in induction.

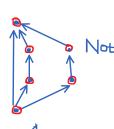
- Greatest Element: xES St YYES y < x _ Need not Exist..

 Smallest " : xES St YyES x < y
- * Reflexive Reduction of < !- Relation obtained on removing Self-loops = <

 Reflexive Closure of < * Spo
- * Transitive Reduction of 61
 - = 35 trons. reduction iff > [a=b → #m ∈ S-{a,b} s.t. a < m < b] → No Element is transitive!
 - Transitive Closure of = = €
 - Exists for Finite posets; need not be for ∞ .

Proof By Induction? Try doing by sey.

* Hause Diag'- Draw transitive reduction of (S,R) for simplicity.



Not a transitive reduction

- * Habse Diag! Draw -transitive reduction of (S,R) for simplicity.
- * Bounding Elements !

-for
$$T \subseteq S$$
; z is upper bound of $T \Rightarrow \forall y \in T$, $y \in x \Rightarrow D$ of the greatest LB and Least UB for " z is lower bound of $T \Rightarrow \forall y \in T$, $z \in y$ of the exists, it is unique

- * Total/Linear Order All pairs are comparable.
- * Order Extension: for (S,4); (S,R) is extension if a 4 b \rightarrow aRb
 - We can extend Poset to totally ordered set Topological Sorting
 - Order Extension Principle is usally taken as an Axiom !

Lecture-4D

Saturday, September 19, 2020 8:53 PM

Chain !-

- Given poset (S, <); O S is a chain if O is totally ordered.
 i.e., all distinct Elements are related to each other.
- Anti Chain means no two distint, Elements are comparable.

 Meaning, Self-loops can be present.
- Singular Elements are both chains and anti-chains! p is an Anti-Chain!
- * From this; n(Chain 1 Anti-Chain) < 1
- * Height of an Element! a & S
- Height(a) = Max length of chain with 'a' as maximum.

 This will be at least $1:-\{a\} \rightarrow \text{Well defined for finite S, S} \neq \emptyset$ Always check if the Set you're considering for height is a chain!
- Define height of poset as !- Size of largest chain in poset

 = Max(heights)
- * * Literally the height of element in Hasse diagram | * *
 - Let AH = {a | Height(a) = H}; Set of elements with same height.

 ⇒ AH is an anti-Chain | → Simple enough, prove by contr.
 - Also, from Hasse's diagram ;- we can see that all Ah partition S exactly.

Mirsty's theorm's An one the least number of partitions into Anti-Chains Like, min. number = Height of poset. All partitions need not be An, though

We can see that each element in largest chain must be in different sets.

* Dilworth's theorm' Least number of chains partitioning S= Length of biggest anti-chain. Mirsky's theorm' Least number of a.c. partitioning S= Length of biggest chain.

Functions: + f:A > B

- Maps elements in Domain to elements in Co-domain.
- Image of $f \Rightarrow \{y \in B \mid \exists x \in A, f(x) = y\} \Rightarrow \text{Elements of Co-domain which are uped.}$
- If both domain Codomain are totally ordered; plotting it is possible
- Composition of functions > gof (x) <> Im(t) = dom(g)

* Types of Functions i-

- 1) Onto Surjection Check Co-domain
- 2) One-One Check domain Injective
- 3) Bijection -> Both one-one and onto

* Investable -

diA →B

- f is soid to be invertible iff Ig, gof(x)=x 4xEA
- Notice that f' need not be invertible/unique
 - becomes usique if I is a bijection.

Graphs

- Have many physical interpretations such as social networks and the such.
- We typically want graphs with few connections but good connectivity.

 NP-hand A class of problems without an efficient Algo.

Definition Simple Graphs

- A simple graph G = (v, E) where V - N on empty and finite set of nodes $E \subseteq \left\{ \left\{ a_{3}b\right\} \middle| a_{3}b \in V : \underline{a \neq b} \right\}$

- In terms of relations; a simple graph would be symmetric and irreflexive.

Definition Complete graph $K_n - n$ nodes, all possible edges present.

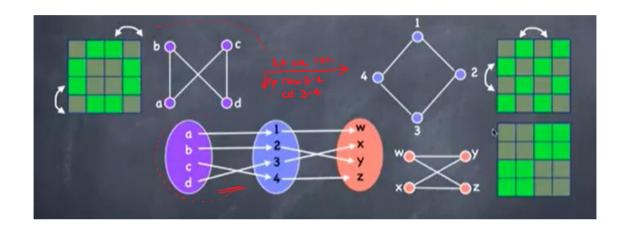
$$E = \left\{ \{a,b\} \mid a,b \in V, a \neq b \right\}$$

Bipartite graph - Set V & partitioned into V_1 and V_2 ; no edge within V_1, V_2 $E \subseteq \left\{ \{ a, b \} \right\} \quad \text{a.e.} \quad V_1 \quad \text{b.e.} \quad V_2 \right\}$

Complete bipartite graph $K_{n_1,n_2} - n(Y_1) = n$, and $n(Y_2) = n_2$ All possible edges one present.

Definition Groph Isomorphism

- Gi, Gz are isomorphic if one is a relabelling of another
- * Formally 5- $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic iff there is a bijection $\{i, V_1 \rightarrow V_2 \text{ Such that } \{u, v\} \in E_1 \text{ iff } \{f(u), f(v)\} \in E_2$
- Adjancy motrix: A boolean matrix keeping track of which vertices are adjacent.



- No efficient algorithm is known to check if two graphs are isomorphic

Definition Subgraph

- G,= (V, JE) & a subgraph of G2(V2, E2) If V1 C V2 and E1 C E2

Definition Malk - A walk of Length 'k', $k \ge 0$, from node a to hode b is a sequence of nodes $(v_0, v_1, ..., v_k)$ such that $v_0 = a$; $v_k = b$ and $\{v_i, v_{i+1}\} \in E$

Path - A walk with no node superating

Scle - A walk with k≥3 where Vo=V4 and no other repetition occurs.

- A graph is acyclic if no cycle is its subgraph

Definition Connectivity

- Let us v be two rodus. They are sald to be connected iff a path/walk exists from u to v.
- The relation connected (4, v) is equivalence in nature.

every node us related to itself

- The equivalence classes are called as connected components.

<u>Definition</u> <u>Degree of a Vertex</u>

- The number of edges incident on the vertex.

Lemma $\sum deg(\sqrt{i}) = 2n(E) - every edge is counted twice.$

Definition Degree Sequence

- Sorted list of degrees of all vertices in a given graph.
- Invariant under isomorphism. -> To disprove isomorphism, check this first!

Definition Eulerian trail

- A walk which visits every edge exactly once

Theorem Eulerian trail exists -> at most 2 add degree nodes.

Define enterly) and exit(v): for all v other than Start and end have lenter(v) = lexit(v)

Eulerian circuit - a closed Eulerian trail -> start and end nodes are the same

Eulerian circuit Exists \longleftrightarrow No odd degree AND all edges in one connected component

Definition Hamiltonian Cycle

- A cycle which visits all modes exactly once.
- No efficient algorithm to check if a graph has a hamiltonian cycle.

- NP-hard problem -

Definition Distance

- Shortest walk between two rodus is a path. (obviously)
- The length of shortest poth is called distance. (on if no path)
- Graphs can be used to model probalistic processes; with shortest being most likely
- Diameter the Largest distance in a graph

* Graph Coloring!

· We know that the partitions of a bi-partite graph can be "coloured" so that no edge exists between two nodes of the same colour. This is said to be proper colouring.

Definition : $V \rightarrow \{1,...,k\}$, $\forall \{x,y\} \in E \rightarrow C(x) \neq C(y)$

· 'C' need not be onto, as we don't need to use all colours.

Definition: Chromatic Number -

- The least number of colours needed to properly colour Graph G.
- Represented as $\chi(G)$
- · If a graph can be columed using 'k' colours; XG) ≤ k ⇒ wed to find upper bound of XG)
- · Notice that if H is a subgraph of G; X(H) < X(G)
 - 1) If K_n is subgraph of $G \Rightarrow \chi(G) \ge n$ \Rightarrow used to find be sound of $\chi(G)$ 2) If C_n is subgraph with odd $n \Rightarrow \chi(G) \ge 3$

- · Also, notice that X(G) is invariant to isomorphism
- · Calculating X(G) is an "NP-hard" problem.
- · Practical applications refer to a "conflict graph".
- * Biportite Graph !-

Theorem A graph is bipartite if it contains no add cycle, \Rightarrow if $C_{2n+1} \not= G \leftrightarrow X(G) \leq 2$ \leftarrow is easy, prove by contradiction. (\Rightarrow proof??)

* Complete graph - "Clique"

Theorem Let G have 'n' nodes. $\chi(G) = n \leftrightarrow G$ is isomorphic to K_n \leftarrow : Invariability $3 \rightarrow \text{prove by contradiction}$.

Definition Clique Number $\omega(G)$ - The largest subgraph of G which is bosomorphic to a complete graph, $\chi(G) \ge \omega(G)$ Independence Number $\alpha(G)$ - The number of nodes in largest subgraph with no edges. $\chi(G) \ge \frac{n}{\alpha(G)}$

· We have two Lower bounds for X(G). We stall now prove an upper bound for X(G).

Theorem: $\chi(G) \leq \lambda(G) + 1$ where $\lambda G = \max$ order of a node in graph G.

- * prove by induction. Can be proved by contradiction even Jaster.
- The equality holds for a clique and Can+1 only \ -(***)

D=6

- * Some special graphs
- 1) Path graph $P_n \equiv 0 0 0$

 - $\cdot \quad \chi(P_n) = \lambda$

2) Wheel graph Wn (n23)

- . N = {hub} u Zn; E = \ (\cdot \cdo

- 3) Ladder graph Ln =
 - · x(Ln) = 2
 - · V = fo, 1 } x {1, -- , n}
- t) Circular Ladder graph Cin'
 - · Tust connect the ends
 - X(CLn) # 2 when n=odd

* Hypercubest On

V - all n-bit strings; $E - x_{,y}$ connected if they differ only at a single bit.

- · Clearly visible that the diameter = h
- · On is n-regular bipartite graph, and Qn-1 is a subgraph of Qn.

partition art posity prefix and oith a '0' and '1' suspectively

- * Knesser Graph-KGn

- V = P(S) where $S = \{1, 2, ..., n\}$ F = A is joint subsets of S. F = A is point subsets of S.

· All set operations can be extended to Graphs as well.

$$G_{1}(\forall_{1}E_{1}), G_{2}(\forall_{2}E_{2}) \Rightarrow U, \cap_{1} \triangle_{1}(-)$$

$$G_{1}(\forall_{1}A_{1}), G_{2}(\forall_{2}A_{2}E_{2}) \Rightarrow U, \cap_{1}$$

· Power of a graph; $G^2 = (V_3 E^1)_3 E^1 = \{(x,y) \mid (x_3)_3 (x_3) \in E\}$

For {zsy} & E of Gh; a path from x to y of atmost length 'k' should exist.

* Cross product !-

Definition Let $G_1(V_1,E_1)$ and $G_2(V_2,E_2)$. The cross product $G_1 \times G_2$ is defined by $(V_1 \times V_2,E)$ where $E = \{(u_1,u_2),(v_1,v_2)\}$ where $(u_1,v_1) \in E_1$ and $(u_2,v_2) \in E_2$.

- · Biportite double cover G' = G x Kz; where Kz is a bipartite graph.
 - · How all info of G; but in a bipastite space.
- * Box product $-G_1 \square G_2 = (V_1 \times V_2) E$ $E = \{ (u_1 u_2)_1 (V_1 \vee 2) \} \text{ where} \quad (u_1, V_1) \in E_1 \text{ and } u_2 = V_2$ or $(u_2, V_2) \in E_2$ and $u_1 = V_1$
 - · Can be seen that Qn \ Qm = Qn+m
 - · We use box products in the defn of a Hamming graph.

- Can be seen that this gives hypercubes for q=2.

Graph Matching

- · A set of edges in a graph which do not shows any vertex is called as a matching."
 i.e., every node gets matched with atmost one other node
- · Trivially of is a matching.
- · A subset of Edger, M, is said to be a Perfect Matching if all vertices are mapped by it, this may or may not exist.
- · Finding the largest possible mapping is not NP-hord, and algorithms do exist.
- * Matching in Ripartite graphs

Let G(X,Y,E) be the bipartite graph where X,Y are the disjoint sets of vertices.

Definition We define a matching to be a Complete matching from χ to χ if all the nodes in χ are matched to an element in χ .

* Neighbourhoods }

Definition Given G(V,E) and $v \in V$; nbd of $v = \Gamma(\{v\}) = \{u \mid \{u,v\} \in E\}$ $S \subseteq V$; nbd of $S = \Gamma(S) = \bigcup_{v \in S} \Gamma(v)$

- Take a bipartite graph G(X,Y, E). For SEX;
 - If |7(6)| < |5|, we say that the neighbourhood in shrinking
 - For some BEY: If |7(5) nB/< (51, we say that the nbd is shrinking in B.

Theorem Halls Theorem !-

- A bipartite graph G(X,Y, E) has a complete matching from X to Y (1) no Subset of X is Shrinking.

Proof! complete matching -> no shrinking subset is easy enough to prove by contradiction.

ro shrinking subset -> complete matching; - prove via strong induction on |X|

Application! The edge set of any bipartite graph where each vertex has degree 'd', can be partitioned into 'd' matchings.

We prove this by induction and. It holds for d=1.

Hypothesis - For a given d=1, this holds

Step! - Given that degree of each = d+1. If a single perfect matching is found, by removing these edges and from hypothesis we get the remaining 'd' partitions.

- Take a subset $S \not = X$. # of edges coming out of $S = d \cdot |S|$ $\# g \mid edges \mid \text{incident on } T(S) = d \cdot |T(S)|$

and we know that # of edges coming outlaS \leq # of edges incident on $\Gamma(5)$ $\Rightarrow |S| \leq |T(S)| \Rightarrow \text{no shrinking} \Rightarrow \text{one matching exists}$

* Vertex Cover >

Definition For a given graph G(V,E); $C \subseteq V$ is said to be a vertex cover if all edges in G is incident on at least \bot vertex in C.

- Trivially, for a graph G(V,E); V is obv. a vortex cover, and so is $V \{u\}$, $\forall \ u \in V$
- · Finding the smallest possible vertex cover as an NP-hand problem.
- · However, we'll be able connect finding the smallest vertex cover with a maximum matching, and this So very strong in the case of bipartite graphs.

Relation 1: For a vertex cover C, matching M; $|C| \ge |M|$, for a general graph.

Königs theorem - In a bipartite graph, size of smallest vortex cover equals size of max. matching.

Proof by hall's theorem

Let C be the smallest vertex cover \Rightarrow Let $C \cap X = A$, $C \cap Y = B$; Erough to show for A, as B would hold by symmetry. Looking at $A \rightarrow (Y - B)$; we can show that no shrinking subset of A exists in Y-B, by contradiction.

 \Rightarrow By hall's theorem; matching from A to Y-B exists. \Rightarrow # edges = |A| Similarly from B to Y-A \Rightarrow # edges = |B| put together, we get a mapping of Size |A|+|B|=|C|,

- · We define a Maximal matching to make finding smallest vertex cover a little earlier.
- Definition A matching, M, so said to be maximal if adding a new edge would cause M to stop being a matching.
 - Can be converted to a vertex cover pretty easily, just take both endpoints of all edges in M.

* Independent Set >

Definition A subset $I \subseteq V$ is independent set if no edge exists between any vertices in I.

Notice that \overline{I} is a vertex cover.

→ Finding the largest independent set is NP-hard as well.

rees

· A tree is Simply a connected acycle graph.

Forest is just defined as an acyclic graph. Any subgraph of a forest (or tree) is also forest.

· Leaf- rade with degree 1.

Statement - Every tree with obleast two rodus has atleast two leaves.

(to prove, look at the maximal path of the tree, and prove that the ends are leaves)

Deleting a Leaf from a tree yields another tree. This property is used to have induction on trees.

Le, use this property during the induction step to get n-node tree from (n+1) nodes.

Induction

Statement - For a tree G(V,E); |E|=|V|-1 (Converse also true) If |E|=|V|-1 → Graph is tree)

By induction on |Y| => |V|=1 => |E|=1-1=0

Let IM=n; for (n+1) nodes tree, shrink by deleting 1 and use hypothesis.

* Rooted tree !-

- A tree with a special designated rade called the "root".
- u is an acceptor of v, and v is desendant of u; iff path from root to v power through u.
- Leaf = has no descendants.
- · Depth Length of the path from root to that rode.
 - · Level i Set of nodes of depth i.
- · Arity max. number of children for a node
 - · Full m-any tree is a tree with all nodes having same number of childeren
 - · Complete tree has all Jeaves at the same Jevel.