CS6001 - Game Theory

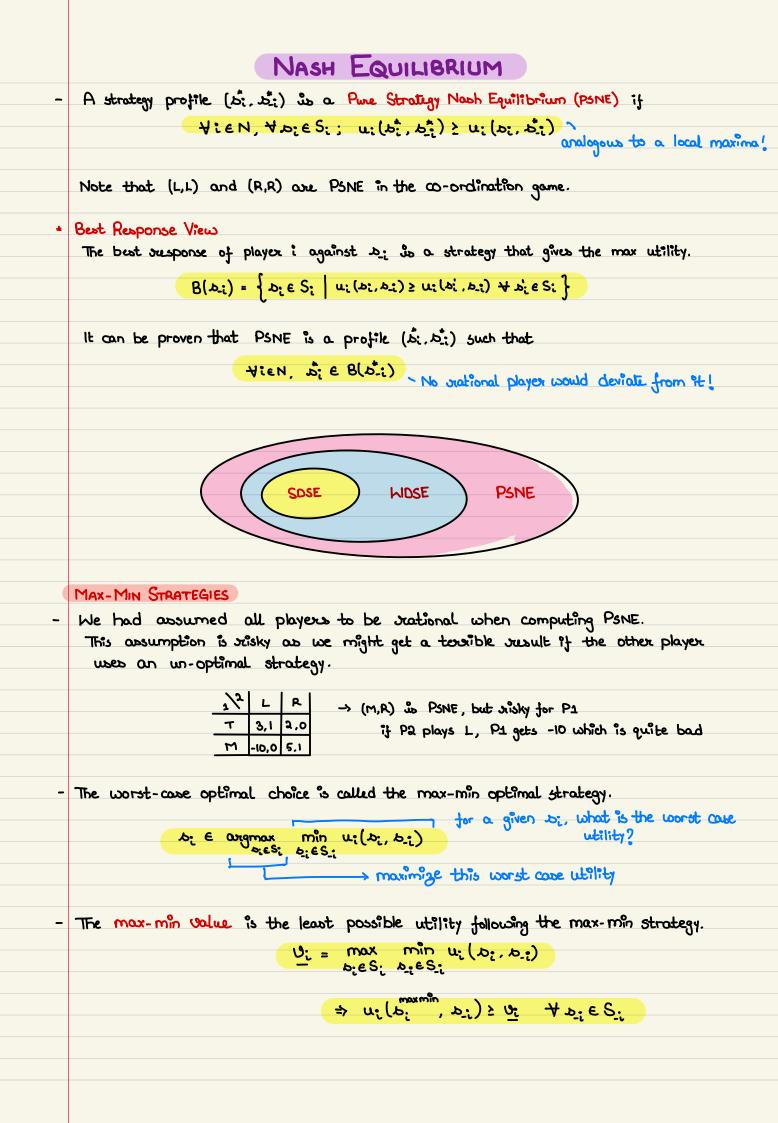
Part 1 Introduction, NFG + Nash Eqb.

INTRODUCTION TO GAME THEORY

-	We shall focus on Algorithmic design and analysis and use game theory to get us these.
	That is, we shall design a game such that a seasonable outcome is achieved.
-	We shall be supresenting games in the following manner:-
	$\frac{\lambda^{B}}{\Lambda_{1}} = \frac{B_{1}}{S, 5} = \frac{B_{2}}{S, 6} \rightarrow \text{The Prisoner's Dillemma}$ $\frac{A_{2}}{A_{2}} = 6, 0 = 1, 1$
	A7 6,0 1,1
	The first element of the tuple is the utility of player A, and second element is the utility for Player B.
-	A game is a strategic interaction between players with a strategy. mapping from state \rightarrow action
	NORMAL FORM GAMES - games where each player makes a choice
	NORMAL FORM GAMES - games where each player makes a choice and the game ends once every player has made
	a choîce
-	Agents are assumed to be:-
	Rational - desires the highest utility
	Intelligent - knows rules of the game and picks actions assuming
	other stational and intelligent people.
	L has enough into to compute the "optimal" solution
*	A GAME OF CHESS how common knowledge
-	The natural question that we pose are:
	1) Does W/B have a winning strategy?
	2) Does either have a strategy to ensure a deaw?
	s) Are neither possible?
_	A winning strategy by is such that $\forall s_8$, (by, b_8) always ends in W winning
	Draw gurantzeing strategy ", (bis, be) is always either à draw or A wins
Theorem	
	EITHER W HAS A WINNING STRATEGY
	OR B HAS "
	OR W/B HAVE A DRAW-GUARANTEEING STRATEGY
Proof	Can prove quite easily using induction over subtrees and node-count.

	Construct a game tree with a node being a state
	r(z) - subtree rooted at z, including z
	Π_{z} - number of nodes in $\Gamma(z) \Rightarrow \Pi_{z}=1$ if z is terminal
	Induction over nz
Basis of Induction	$n_z = 1 \Rightarrow \text{Consider a terminal game state.}$
Thomas	⇒ The statement is vacuously true
Inductive Hypothesis	Consider that the statument holds for all nodes y with Ny < K
Inductive Step	Nork from the bottom-up.
0-1	Consider a rode z with $n_z > 1$, and y to be a descendant of z .
	Dy < Dz WLOG, assume it is white's twin at z, and black's twin at y.
	Case 1) ty, Black has a winning strategy
	> Nothing at * can stop Black from winning
	⇒ Black has "won" at z @
	Case 2) Iy, White has a winning strategy
	> Simply pick that 1
	\Rightarrow hillite has a winning strat at z . $-(1)$
	Case 3) = y, Black has no winning strat and
	ty, White has no winning strat
	⇒ From hypothesis, both B/W have a strat to draw
	⇒ Pick that's
	Now both B/W can seach a draw from x -3
	All copes covered.
	Statement proven wing strong mathematical induction.
•	Representing Normal form games
	Representing Normal form games N = {1,2,n} - set of players finite tien
	S: - set of strategies for i'th player S: - " everyone except i'th player
	S_: - " everyone except i'th player
	(Si,S_i) ← S = X Si - Sit of strategy profiles
	u; S→R - Utility for player i
	$NFG - \left\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \right\rangle$

*	DOMINATION IN NEGS
	Loosely speaking, a strategy is said to be dominated when these exists some other strategy
	which us very clearly better than the current one.
-	Formally, $b_i \in S_i$ is said to be strictly dominated if $\exists b_i \in S_i$ such that
	$\forall s_i \in S_i$, $u_i(s_i, s_i) > u_i(s_i', s_i)$
	Sin larby she S
_	Similarly, $s_i \in S_i$ is said to be weakly dominated if $\exists s_i \in S_i$ such that
	$\forall s_i \in S_i$, $u_i(b_i, b_i) \ge u_i(b_i, b_i)$
	$(\underline{j}_{\underline{d}}, \underline{j}_{\underline{d}})$ $\times (\underline{j}_{\underline{d}}, \underline{j}_{\underline{d}})$ $\times (\underline{j}_{\underline{d}}, \underline{j}_{\underline{d}})$ $\times (\underline{j}_{\underline{d}}, \underline{j}_{\underline{d}})$
	rot seally "dominating" if both have same utilities jor all s_:
-	Similarly, a strategy D_i is STRICTLY/WEAKLY DOMINANT if it strictly/weakly dominates all other strategies $D_i' \in S_i \setminus \{D_i\}$
	0
+	DOMINANT STRATEGY EQUILIBRIUM
	A profile S^* is the strictly (weakly dominant strategy eqs. if every $b_i \in S$
	is strictly/weakly dominant.
	Rational Outcomes of a game
	A player would never play a dominated strategy.
	⇒ Can use simply eliminate these strategies to get the rational outcome?
	No.
	- Order of elimination for SDS does not matter
	- However, order does matter for HDS! A possibility of eliminating trational outcomes
	exists l
	Manager deminant theopolis / DEE is not succeeded to prick !
•	Moreover, dominant strategies / DSE is not guaranteed to exist!
	PI L R Co-ordination game
	L 1,1 0,0
	R 0,0 1,1
	To deal with these drawbacks, we introduce a new eqs.



meaning looking at dominant strategies is "sisk free" If at is a dominant strategy for player i, then it is also a max-min strategy Theorem Case 1 - Strictly dominant Proof From the defn itself, ui(bi, bi) > ui(bi, bi) y bi∈ Si {bi} ¥ p;eS; Define a new function which takes so; as argument and gives the worst possible . <u>ہ</u> $\underbrace{\begin{array}{l}
 min}{min}(b_i) = 0xgmin u_i(b_i, b_i) \\
 b_i \in S_i
 \\
 b_i \in S_i
 \end{array}$ From the defn, it holds that $u_{1}(a_{1}^{*}, a_{1}^{\min}(a_{1}^{*})) > u_{1}(a_{1}^{*}, a_{2}^{\min}(a_{1}^{*})) \rightarrow u_{2}(a_{1}^{*}, a_{2}^{\min}(a_{1}^{*})) \rightarrow u_{1}(a_{1}^{*}, a_{2}^{\min}(a_{1}^{*})) \rightarrow u_{2}(a_{1}^{*}, a_{2}^{*})$ That is, for every D; = D; st gets the best possible utility even in the worst case scenario > 2; is max-min strategy Similar proof for a weakly dominant strategy works. Every PSNE $\mathfrak{L}^* = (\mathfrak{L}^*_1, \dots, \mathfrak{L}^*_n)$ of NFG vatisfies $\mathfrak{u}_{\mathfrak{L}}(\mathfrak{L}^*) \geq \mathfrak{U}_{\mathfrak{L}}$ Theorem that is, utility in every PSNE would be atleast the worst-case max-min strategy's utility From det. of PSNE, Proof $U_{i}(b_{i}^{*}, b_{i}^{*}) = \max U_{i}(b_{i}^{*}, b_{i}^{*}) \geq \max \min U_{i}(b_{i}^{*}, b_{i}^{*}) \stackrel{\text{from def. of min}}{b_{i}} = b_{i}^{*}$ <u>> 0;</u>

*	ITERATED ELIMINATION OF DOMINATED STRATEGIES
	We shall now look at effects of itexated elimination on ;-
	() PSNE
	 (ع) <u>۲:</u> - max min value
3	
Theorem	Consider an NFG = (N, Si, u;) and let $\hat{\mathcal{D}}_{i} \in S_{i}$ be a dominated retrategy.
	Let the susidual game after removing \hat{b}_j be \hat{G} . the maxmin value
	Let the susidual game after removing \hat{c}_{j} be \hat{G} . The maxmin value for j in both G and \hat{G} are equal $\begin{bmatrix} & might change for \\ & might change for \\ & other players \end{bmatrix}$ Let maxmin in G tor $\hat{c}_{j} = 0$; = max min with \hat{c}_{j} is $\hat{c}_{j} \in S$;
Proof	
	$\hat{G} \text{ for } \hat{j} = \hat{Q}_{j} = \max \min_{\substack{i \in J}} u_{j}(\lambda_{j}, \lambda_{-j}) ; \lambda_{j} \in S_{j} \setminus \{\hat{D}_{i}\}$
	Proof by Contradiction
	Assume $v_j \neq \hat{v}_j \Rightarrow \hat{v}_j \land v_j \Rightarrow \hat{s}_j$ was the only max-min strategy
	$\Rightarrow \dot{b}_{j} = a_{ij} max min u_{j}(b_{j}, b_{-j})$
	however is is dominated a argmax CANNOT yield is
	CONTRADICTION
0	A
Theorem	Consider a NFG G and let Ĝ be the game after elimination of a not necessarily dominated
	strategy. If profile st is PSNE in G, and it survives in Ĝ,
Prost	Then is PONE in G as well!
Proot	b^* is PSNE in $G \Rightarrow u_i(\dot{b_i}, \dot{b_i}) \ge u_i(\dot{b_i}, \dot{b_i}) \forall i \in N, \forall b_i \in S_i$
	Let player j's s; be removed
	j≠i as st exists in Ĝ
NY .	⇒ inequality of maxima unaffected !
Theorem	Let is; be a weakly dominated strategy for G, and eliminating it yields G.
	Every PSNE of Ĝ is also a PSNE for G _ New PSNE cannot form! Old ones may be surroved.
Proof	s; is weakly dominated
	$\Rightarrow \exists a_{j} \in S_{j} \setminus \{a_{j}\} \text{ such that } u_{j}(a_{j}, a_{j}) \geq u_{j}(a_{j}, a_{j}) \forall a_{j} \in S_{j}$
	Let the profile st be a PSNE in Ĝ
	$\Rightarrow u_{1}(\lambda_{1}^{*}, \lambda_{2}^{*}) \geq u_{1}(\lambda_{1}^{*}, \lambda_{2}^{*}) \forall \hat{\iota} \neq \hat{j}, \forall \hat{\lambda} \in S;$
	້ະ= ງໍ => _bj ∈ Sj \ {bj }
	For this to be a PSNE in G, we need Rest all cases are covered here
	$u_{i}(a_{i}^{*}, a_{-i}^{*}) \geq u_{i}(a_{i}, a_{-i}^{*})$

	Using the fact that is in dominated;
	$\exists b_{j} \in S_{j} \text{ st. } u_{j}(b_{j}^{*}, b_{j}^{*}) \geq u_{j}(b_{j}^{*}, b_{j}^{*}) \geq u_{j}(b_{j}^{*}, b_{j}^{*})$
	PSNE WD
	نه مه is PSNE in G as well.
	Summary
	- Removing SDS has no effect on PSNE
	- " WOS may sumove PSNE, but never addo a new PSNE
	- Maxmin of a player is unaffected by surnoving either
	MATRIX GAMES (TWO PLAYER ZERD SUM)
-	A special class of NFGs with - N = 2
	$- u_1 + u_2 = 0 \forall b \in S$
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	$\begin{array}{c c} L & 2, -2 & -3, 3 \\ \hline B & 0, 0, 1, -1 \\ \hline \end{array}$
	The calculation of max-min for player 1 is unchanged.
	Player 2 needs to compute min-max instead!
	Copple E Pours he has makely it when a value it may be P1 but all for D2
	SADDLE POINT for the matrix is when a value is max for P1 but min for P2. along row along col.
	In a matrix game with utility u,
	(2,, 2) is a saddle point IFF (2, 2) is a PSNE
-	Similar to NFG, define :-
	$\frac{1}{1000} - \frac{1}{100} = \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	δ ₂ δ ₁
Theorem	A matrix game has PSNE iff $\overline{u} = \underline{u} = u(b_1, b_2)$; and (b_1, b_2) is also a PSNE