Data Structures and Algorithms

Akash Cherukuri - 190050009

Computer Science and Engineering

Mentor:- Prasanna Telawane

Data software _—

iz Algorithmics.
g Awltcatmns;Perfﬂrmancesmm

Programming /i & Ambss

-
.-::'

.ﬂ:.ll.;i.l::llnn L_ i

Exmrlmnmlmemnr Massive 3 W E
kbt headodogies H":grmy

Engin

CONTENTS

Contents

1 Introduction

1.1 Prerequisites
1.1.1 Debugging your Algorithm - Stress Testing
1.1.2 Pseudo-Code

2 Algorithms

2.1 What makes an Algorithm good?
2.2 Computing Runtimes
2.2.1 Asymptomatic Notation
2.2.2 Big-O Notation
2.2.3 Q-Notation and ©-Notation
2.2.4 Master Theorem
2.3 Types of Algorithms
2.3.1 Greedy Algorithms
2.3.2 Divide and Conquer Algorithms
2.3.3 Dynamic Programming

Data Structures

3.1 Arrays ...
3.2 Singly-Linked List
3.3 Doubly-Linked List
3.4 Stacks

3.4.1 Implementing Stacks using Arrays
3.4.2 Implementing using Linked Lists
3.5 Queue
3.5.1 Circular Queue in Arrays.
3.6 Tree

3.6.1 Traversal through a Binary Tree
3.7 Dynamic Arrays
3.7.1 Amortized Time Analysis
3.8 Priority Queues
3.8.1 Naive Implementation - Arrays
3.8.2 Implementation using Heaps
3.9 Hash Tables
3.9.1 Implementing using Arrays

2

CONTENTS

3.9.2
3.9.3
3.9.4
3.9.5

Implementing using Linked Lists
Best of both - Hash Tables
Collision Handling
Time Calculation and Increasing Speed

3.10 Binary Search Trees.
3.10.1 Naive Implementation using Hash Tables
3.10.2 Implementation using Lists and Sorted Arrays . .
3.10.3 Implementation of the Binary Search Tree .
3.10.4 Balancing Trees - AVL Property

4 Algorithms on Graphs
4.1 Representing Graphs
4.2 Computing Runtime,
4.3 Graph Exploration

4.3.1

Connected Components

4.4 Directed Graphs. L.

4.4.1

Linear Ordering

4.5 Dijkstra’s Algorithm,
4.6 A" — Algorithm

5 String Algorithms
5.1 Pattern Matching Algorithms

5.1.1
5.1.2

6 References

Trie-Matching the Smaller Strings
More Efficient Trie-Matching

39
40
42
43
44
45
46
47
48

50
50
ol
53

55

1 INTRODUCTION

1 Introduction

Data Structures are structures which are used to handle and store
data. Data Structures may be present by default in a programming
language, and if they aren’t present in there, we can code them in.
Having a good knowledge of data structures is essential as it allows the
programmer to be able to manipulate the data as needed seamlessly
and in an effortless manner.

An algorithm is a finite set of instructions or logic, written in
order, to accomplish a certain predefined task. Algorithm is not the
complete code or program, it is just the core logic(solution) of a prob-
lem, which can be expressed either as an informal high level description
using a flowchart.

1.1 Prerequisites
1.1.1 Debugging your Algorithm - Stress Testing

Creating and Coding of a better Algorithm than the existing one is
challenging, and usually ends up having some mistakes in it. Usually,
the programmer might forget some rare cases in which the algorithm
fails, or worse, produces wrong results. It can also be seen that debug-
ging of such a case is difficult, as the problem doesn’t occur frequently.
Stress-Testing can be employed to identify some of these bugs.

Stress-Testing is an exhaustive method of testing your bugs, in
which the inputs are generated randomly. It is carried out by repeat-
edly giving the same inputs to both the algorithms (the older one and
the faster, more efficient newer one) and checking whether the output
produced by both the algorithms is the same or not. By the use of
cout (in C) or print (in Python) statements, we can identify the cases
in which our algorithm(s) fail, and debug them appropriately.

2 ALGORITHMS

An Example of Stress Testing is shown Below:-

//f1 is the first algorithm, f2 is the second algorithm.
while(TRUE){
x=rand ()% ;
cout << << x << endl;
f1(x);
res2 = f2(x);
if (resl!=res2){
cout << << endl;
cout << resl << << res2?2 << endl;
break;

resl

}

else cout << << endl;

1.1.2 Pseudo-Code

Because data structures and Algorithms are universally applicable to
all languages, it doesn’t make sense to talk about the logic in terms of
a single programming language. Neither can we just simply state the
logic as it may not be understood by everyone.

Therefore, in order to express the logic, we use an informal high-
level description of the logic. Further more, we can make it so that our
descriptions follow the general coding syntax, without actually using a
programming language.

This informal descrition of the logic in an alforithm is reffered to
as Pseudo-Code. Pseudo-Code means ”False Code”, and it is called
so because the description looks like a code, but is not.

2 Algorithms

As previously discussed, and Algorithm is just a set of instructions
which can be followed to solve a specific set of problems. Being able
to create, and code, efficient algorithms is a very important skill that
every programmer must try to include in his/her skillset.

5

2 ALGORITHMS

2.1 What makes an Algorithm good?

An Algorithm is said to be ”good” or ”better” than a different
algorithm when both the algorithms are designed to perform the same
tasks, but the first algorithm excels the second Algorithm in any of the
following criteria :-

e [t takes lesser time to arrive at the solution.
e [t is computationally less heavy.

e It uses up lesser computational resources.

Example of a good Algorithm

Suppose we would like to create a program to compute the value of
the n'® number in the Fibonacci Series. A trivial way of coding this in
would be to have and iterated function as follows:

//Recursive version of the code
int Fib Calc(int n){
if (n<=1) return n;
else return (Fib_Calc(n-1)+Fib_Calc(n-2));

}

This Algorithm for calculating the n* number seems to be very
simple and straight-forward, but is highly inefficient. For example, if
we needed the 100" number in the series, the program running on this
code wouldn’t be able to calculate it simple because of how inefficient
this method is. To understand why this inefficient, lets try to create a
Binary Tree model for the way in which the n'* number in the sequence,
say F;, is calculated:

2 ALGORITHMS

Notice how F},_3 is being calculated thrice unnecessarily? This is
what causes our algorithm to be very tedious computational-wise and
what causes it to be very time consuming. In order to overcome this,
we could devise another algorithm which actually stores the values of
Fn as it goes upto the required value of n as follows:

//New Algorithm for the task
int Fib Calc(int n){

int 1=2;

int val[n+1];
val[0] = 0O;
while(){

val[i] = vall[i-1]+vall[i-2];
if (i==) return vall[n];
1++;

}s
}

This is a better algorithm when compared with our previously writ-
ten recursive algorithm, as it calculates the values QUICKER then
the first algorithm, and it also is COMPUTATIONALLY LESS

HEAVY.

From this example, we can see understand the importance of study-
ing and understanding and the power of being able to write good Al-
gorithms. A good algorithm is what makes the difference between a

7

2 ALGORITHMS

solution being given out in a million years, or a solution being given
out as soon as we hit run. It is what makes the searching through
trillions of webpages be done within seconds, and it is what is the most
versatile, and arguable, on of the most important topics to be under-
stood properly.

2.2 Computing Runtimes

We've been talking about an algorithm being faster than another
and about an algorithm being more efficient than the other. So, the
next logical question to be posed would be, ”How long in general would
the algorithm take to finish a computation?” This question opens up a
whole new can of worms, as it cannot be answered very easily.

We can see why this would be a difficult question to answer as there
are many factors which can cause the runtime of an algorithm to vary,
like the difference in the computational power of different clients and
the different number of computations to be performed when the inputs
are different, to name a few. One might think of a workaround to count
the number of lines of code being run.

However, this would be very vague as different lines of code would
require different degrees of computational power. For example, a line
involving addition of two numbers and another initialising an array of
numbers would obviously different time.

IDEA: Assume that all the above issues affect the runtime
by a constant factors, which we can ignore.

That is, a client who has a slow computer might cause the speed of
computation of ALL processes to be doubled. This idea, however, is a
little problematic as then runtimes of a second and an year would be
considered the same as they differ by a constant multiple. This problem
is solved by talking about runtimes in an Asymptomatic Notation.

2 ALGORITHMS

2.2.1 Asymptomatic Notation

Asymptomatic Notation or Asymptomatic Method of talking of run-
times invloves thinking about how the runtimes scale with respect to
the size of the input data. This makes sense, as when the input data
is Large enough, an algorithm whose runtime scales as n?
significantly worse than one which scales as 1000n.

would be

The maximum time that an algorithm must take can be defined by
us, and from that we can calculate a good estimate of the maximum
input size that the algorithm can compute, given that we know the
scaling of the algorithm. ”Scaling” refers to how the runtime depends
on the input size.

General Scaling Comparisions

logoan < v/x < n < nlogyn < n < a”
a€eN

2 ALGORITHMS

2.2.2 Big-O Notation

Big-O is a notation which takes the ideology of Asymptomatic No-
tation and gives it a mathematical definition. This notation allows us
to be able to quantitatively descern How Fast our algorithm is.

Definition. Let f and g be two functions. ”f is Big-O of ¢”, or,
f(n) =0(g(n)) when 3 N,c € Q" such that f(n) <c-g(n)Vn>N.

We can see from the above definition that the Big-O notation tells
us about the Upper Bound for the number of operations that would
need to to be performed by the computer when following the algorithm.
This notion has many advantages, some of them being:

e Clarifies growth rates for large sized inputs
e Clean notations for better representation and understanding
e Mathematically quantified = Algebra is possible

e For large enough inputs, choosing a faster algorithm is easy.

Algebra of Big-O notation

1. Multiplicative Constants can be ignored

7n* = O(n?)

2. Smaller terms can be ignored
n? + 3n + log" = O(n?)

3.a,b€Q", a<b = n®=0(n"
4. a,beQanda>0,b>1 = n®=0O(")
5.a,b€ Q" = (logn)® = O(n?)

By using the above algebra and our intuition, we can accurately talk
about the upper bound of the runtime of the algorithm. Consecutive
steps in the algorithm require us to add the Big-O functions, while
those in a loop require us to multiply the Bog-O function of the steps
IN the loop with the Big-O function of the looping mechanism itself.
We then further simplify the Big-O notation and arrive at our Final
Answer.

10

2 ALGORITHMS

However, this noation of representing runtimes is not without faults.
The faults of this notation are given below:

e Runtimes which differ by a constant factor cannot be distinguished
by this notation.

e By definition, Big-O is asymptomatic in nature.

e [t works well only for Large sizes of data. An Algorithm which
follows n? (for example) is faster than 3" for small sizes of data.

2.2.3 ()-Notation and O-Notation

()-Notation is just like the Big-O notation, but it tells us about the
lower bounds of the runtime.

Definition. Let f and g be two functions. 7 f is €2 of ¢g”, written as,
f(n) =Q(g(n)) when 3 N,c € QF such that f(n) >c¢-g(n) vn> N.

All the algebra of Big-O is still valid for €2 with logic reversed. That
is, instead of the smaller terms being ignored, we ignore the larger terms
and the such.

O©-Notation is similar to an equality in Algebra. It tells us that the
functions increase at a similar rate.

Definition. Let f and g be two functions. ” f is © of ¢”, written as,
f(n) =0O(g(n)) iff f(n) = 0(g(n)) and f(n) = Q(g(n))
For example, 3n* + 5n + 3 = O(n?)

2.2.4 Master Theorem

This theorem is used to quickly find the run-times of an algorithm in
terms of the Big-O notation, when the relations are in recursive format,

T(n) = aT(%) + O(n?). The formula is as follows:

O(n?) d > log;
T(n) < ©(nilogn) d=log!
O(n%) d < logf

11

2 ALGORITHMS

2.3 Types of Algorithms

An algorithm in development has different stages to it, and its de-
velopment cycle mostly goes along the steps:

1. Naive Algorithm: This algorithm is derived from the definition of
the problem statement. It’s usually slow and requires optimization.

2. Optimized Algorithm: The naive algorithm is optimized by us-
ing some standard tools(discussed below) or by the usage of data
structures and reorganizing the way in which steps are done in the
algorithm.

3. ”Magic” Algorithm: This is completely different from the above
two, in the sense that it uses a unique insight into the problem,
and requires a good understanding of the problem statement.

There are different ways of optimizing the Naive Algorithm, which
are given below. However keep in mind that there is no Silver Bullet
for this problem, as no method, that we know of, will work for all the
infinitely many types of problem statements. With that being said, it
is up to the programmer to decide which method would work, and this
requires them to have a good grasp of the methods.

2.3.1 Greedy Algorithms

These classes of algorithms work out an optimised solution for a
given problem statement by taking the most ”greedy” step at a localised
level, and then they repeat this till they reach the end. For example, a
shortest path finding algorithm working in this way would choose the
option which takes it closest to the destination, and then it repeats this
till it reaches the solution.

Before we move further, we must define some terms so that it is
easier to understand some core concepts of this class of Algorithms.

12

2 ALGORITHMS

Sub Problem:

A Sub-Problem is a problem which belongs to the same problem-
class as the original problem statement, and is smaller than the original
problem statement.

In the previous path-finding example problem, finding a path from
the end of the greedy step to the end would constitute as a sub problem.

Safe Step:

An option among the many present at any given point is considered
to be ”Safe”, if there exists an optimized path from the end of this step
to the end of the original problem.

A safe step may, or may not be intuitive in nature as that depends
on the complexity of the problem statement. Therefore, it generally is
a good practice to prove mathematically that the steps being taken by
your algorithm are all safe.

Now that the definitions of a safe step and a Sub-Problem are clear,
lets look at how a Greedy Algorithm can be coded to work:

1. Reduce the given problem statement to a mathematical
model. This makes the following steps easier, and proving that
the steps taken are safe into a mathematical problem, instead of
one relying on intuition.

2. Determine the Greedy Step. This is a step which takes the
algorithm closest to the end point of the problem, where the com-
putation becomes so easy that it can be computed manually.

3. Prove that the Greedy Step taken is Safe.This ensures that
there are no exceptions left out. This is critical, because if we finish
coding an algorithm whose greedy steps aren’t safe, we would need
to scrap the entire thing.

4. Ensure that once the Greedy Step is taken, the problem
becomes a Sub-Problem. If it doesn’t either the logic of our
greedy step is wrong or the algorithm can’t be coded in this fashion.

13

2 ALGORITHMS

2.3.2 Divide and Conquer Algorithms

As the name suggests, this class of Algorithms aims to solve a prob-
lem by dividing it into smaller Sub-Problems, solving each one of
them, and then using the answers from all the sub parts to produce the
final answer. Although it looks very similar to the Greedy Algorithm,
ONE key difference they both have is:

e In Divide and Conquer algorithms, division occurs first and then
the computation follows.

e In Greedy Algorithms; computation occurs, then forming a sub-
problem follows automatically, and then this loop is repeated till
we reach our destination.

Example of some problem-statements where this methodolgy is used
would be:-

e Binary Search
e Polynomial Multiplication
e Sorting Algorithms
We shall look at Polynomial Multiplication in detail now.

Polynomial Multiplication

The problem statement is straightforward; Given two polynomials of
degrees n and m, what is their product?
Naive Algorithm

Let us first define that the input of our problem to be n (the max
degree between the two polynomials), followed by the co-efficients of
the polynomials from z".

Let the polynomials be:
Ax) = ap_12" M+ ap_0x" 2+ 4 a1z + a,
B(z) = by_12" ' + ap_ox™ * 4+ ...+ bz + b,
And let the product of these two polynomials be:
P(2) = pop—ox® % 4 pop_32*" > 4+ .. 4 prx + p,

14

2 ALGORITHMS

We can quite easily calculate the value of each p; by the following

formula: '
2

bi = Z a;bi;

§=0
A naive Algorithm can be set up from the formula. But let’s look at the
time it would take this algorithm to actually compute the product. For
every p;, we would need to perform addition at least n times; and this
would need to be repeated for 2n tries to calculate all the co-efficients.

Therefore, the run-time of out naive algorithm is O(n?).
Divide and Conquer Algorithm

To reduce the run-time, let’s try to implement a divide and conquer
strategy. Let’s split the given polynomials A(x) and B(x) as follows:

A(z) = C(z) - 2% + D(x)

B(z) = E(z) - 2% 4+ F(z)
(if n is not even, just pad the polynomial by adding zero terms)
A(w)-B(x) = {C(x)-E(x)}a"+{C(2)-F(2)+D(x)- E(x) }a" >+ D(x)-F ()

Notice how we've broken the problem down in FOUR sub problems,
half as big as the original. The four sub-Problems are the product of
the polynomials in the RHS of the above equation. Keep in mind that
the degree of each of the sub-problem is (n/2) — 1

15

2 ALGORITHMS

Let’s look at the Pseudo-Code for this Algorithm:

Function Multiply(A, B, n, ai, bi):
res = [2n-1];
if n==1 :
res[0] = A[i] * B[j];
return res;
//Calculating D(x)*F(x)

res[0, ... n-2] = Multiply(A, B, n/2, ai, bi);
//Calculating C(x)*E(x)
res[n, ... 2n-2] = Multiply(A, B, n/2, ai+n/2, bi+n/2);

//Adding the value of middle term

CF = Multiply(A, B, n/2, ai+n/2, bi);
DE = Multiply(A, B, n/2, ai, bi+n/2);
res[(3n/2)-2 ... , n/2] += CF + DE;
return res;

Let’s carry out an analysis for the time taken. Assuming that n is a
power of 2, (even if it isn’t we can the pad the polynomials), the number
of sub-problems that we will have at depth of division 7 is equal to 47,
because each division further divides each product into four smaller
products.

The work done for size n in this algorithm is kn, because the cal-
culated values of the co-efficients need to be assigned to the the array
res, as seen in the above pseudo-code.

Therefore, work done at a given depth ¢ is given by:

. n)
4 k(=)=k-2'n
22
But the value of 7 is log}, and this would mean work done at last step
is k-n%. So this would mean that this algorithm is also not better than
the naive algorithm. However, as we shall see next, there is scope for

improving this algorithm.

16

2 ALGORITHMS

Optimized Divide and Conquer Algorithm or Karatsuba’s Ap-
proach

The reason why our algorithm is still slow is because 4 sub-problems
are created in each step. This approach aims to reduce the number of
sub-problems created by some clever mathematics.

The second term in the above algorithm’s method is C(x) - F(x) +
D(z) - E(x). However, we can write it more efficiently as:

O(2)-F(2)+D(2)-E(x) = [C(a)+D(@)][B(2)+F(2)|~C(x)- E(x)-D()-F(x)

This might seem cumbersome, but notice that the problem is divided
into only 3 new sub-problems, namely, [C(z) + D(z)] - [E(z) + F(x)],
C(z)- E(z) and D(x)- F(x). This is a game changer, as the work to be
done now becomes 3% or approximately n!%®. We can truly appreciate
how much better this is for very large values of n.

2.3.3 Dynamic Programming

This is yet another method of solving problems and optimizing naive
algorithms. This is not a class of Algorithms per se, but rather is a
clever application of logic and the constraints which are presented by
the problem statement.

As Dynamic Programming is not a concept, but rather an idea, we
can understand it via the following example:

Problem Statement. You are a cashier, and as part of your job is
returning change. You would like to know the least number of coins
needed for the transaction.

One of the first ideas that we would have to solve this problem
would we to use a Greedy Algorithm. Like, find the largest coin which
is smaller than the change. Use it, and repeat. This intuition isn’t
wrong, and it does in fact yield correct answers as shown:

17

2 ALGORITHMS

e Values of coins that we have: 1, 5, 10, 25
e Change to be returned: 42
e Using Greedy Algorithm, we get that the coins are 25, 10, 5, 1, 1.

However, It doesn’t work for all cases as we can see below:

e Values of coins that we have: 1, 5, 10, 20, 25
e Change to be returned: 40
e Using Greedy Algorithm, we get that the coins are 25, 10, 5.

However, notice that using two 20 coins is more efficient! Greedy Algo-
rithm doesn’t work because we haven’t proved that using the highest
possible denomination is a Safe Move.

Solving this problem using Dynamic Programming
Let us first define the terms Mathematically;

e Optimal number of coins for Change m is given by C'(m)
e There are n coins.

e Value of i’ coin is given by v;

e The coins are sorted in increasing order of value

By observing the problem statement, we can easily develop this recur-
sive statement:

C(m) =min{C(m —v;) +1,C(m — 1)}Vu; <m

That is, the optimal solution can be obtained by backtracking. This
is why this works: Suppose that the optimal number of coins to return
a change of x is n. Obviously, the optimal number of coins to return a
change of x +v; is n+ 1! The above relation is just this logic in reverse.

So the idea that we might get would be to write a recursive al-
gorithm which branches out from C(m); which can be shown by the
following Pseudo-Code:

18

2 ALGORITHMS

//Pseudo-Code for number of Coins
Function Coins(m):
for v; < m:
rec = (Coins(m —wv;) + 1, Coins(m — 1)) ;
return rec;

However, notice that a certain value of Coins(x) will be calculated
many times over. Re-calculating this value many times will slow down
the algorithm. Also, recall that this situation is highly similar to the
Fibonacci Numbers problem that we had encountered earlier.

So we can use the same solution that we had used for the Fibonacci
Series here as well. That is, in order to prevent recalculations, we create
an array which stores the values of the optimal number of coins for a
given number of change, and then values can be pulled directly from
this array to save computation time.

The Pseudo-Code for this idea is:

//Pseudo-Code for Better Algorithm
Function Fast_Coins(m):
val = arr[m+1]; i=1;
val[0] = 0;
while 1i!=m:
for v, < 1i:
rec = (valli —wv;] + 1, valli—11);
it++;

return val[m-1];

This is the philosophy of Dynamic Programming. Instead of cal-
culating the values over and over again in a recursion; we store the
required values and look them up whenever needed.

However, this might rise a funny question in our heads, "Why is
this called Dynamic Programming in the first place?” The answer has a
historic significance regarding its inception into Computer Science. The
concept of Dynamic Programming was introduced by Richard Bellman
in the 1950s while he was working on an Air Force Project.

19

3 DATA STRUCTURES

However, when he introduced this, everyone dismissed this idea as
it seemed non-sensical. We can see why they thought so as well, as
it seems illogical to compute all the values till the required answer.
However, we know mathematically that this wasn’t the case! Richard
wanted to hide the fact that he was really doing mathematics from the
Secretary of Defense. The following quote from him drives the fact
home:

“..what name do I chose? I was interested in planning, but planning
is not a good word for various reasons. I decided to therefore use the
word ‘programming’ and I wanted to get across the idea that this was
dynamic..”

3 Data Structures

As we’ve discussed earlier, Data Structures are structures which are
used to handle and store data. Data Structures may be present by
default in a programming language, and if they aren’t present in there,
we can code them in. Having a good knowledge of data structures is
essential as it allows the programmer to be able to manipulate the data
as needed seamlessly and in an effortless manner.

3.1 Arrays

e Arrays are a type of Data Structures in which data is stored in
partitions of Equal Size.

e The partitions must have continuous indexing. The starting
index can be 0, 1, or it can be defined by the user.

e [t has Constant Time access, meaning that the time taken for
accessing the array elements takes O(1) time.

Also, the address of any element in the array can be deduced from the
address of the array as follows:

Elem_Addr = Array_Addr + (Sizeof Partitions) - (i —index_of _first)

20

3 DATA STRUCTURES

Arrays also have the functionality to be Multi-Dimensional. There
are two ways in which this may be done:

e Row-Major: The elements are filled in Row-after-row, and we go
to the next column after the row has been filled.

e Column-Major: The elements are filled in Column-wise, and we
move to the next row once all the columns have been filled.

3.2 Singly-Linked List

A singly linked list is generally defined by the programmer, and it
can be easily done recursively. A singly-linked list has head pointer,
which points to a node. A node consists of variables to store data and
a pointer which either points to the next node or points to None, if it
is the end.

Singly Linked list

L 10 1900 g4—p| 15 5000 @l— g 5 3000 @4——pm| 20 null

A variation of the singly-linked list has a Tail Pointer, which
points to the last node in the entire structure. The advantage of having
a tail-pointer is to quickly get to the element at the end of the linked
list. Also keep in mind that moving from one element to another is
possible ONLY in the forward direction.

21

3 DATA STRUCTURES

Available functions and their run-times:

Function Functionality Runtime
pushfront(node) Adds the node to the front O(1)
top() Returns the top node O(1)
pop(7) Removes the 7" node O(n)
append(node) Adds the given node to end O(n)
Searches for the given key, returns
find(node) True if found ’ ’ O(n)
add(node, key) Adds the node after the given key | O(n)

Notice that the runtime for the append(node) function can be reduced
from O(n) to O(1) by using the tail pointer.

3.3 Doubly-Linked List

This is similar to the Singly-linked list, but a doubly-linked list also
has a pointer which points towards the previous element in the sequence
of nodes. This can be seen in the following schematic:

next
_ Null
pomter T

Start 'L i
—>

pointer

Y
h 4

45 3

i
x -

A

previous
pointer

The advantages of having two pointers is evident: We can travel back-

wards from a node, instead of having to get to the node from all the
way from the front. This makes some operations easy, and adding in a
tail pointer makes this data structure very powerful.

22

N —

O J O O = W

Ne

3 DATA STRUCTURES

3.4 Stacks

A Stack is an abstract data type. It is similar to a ”stack” of books,
and the functions in this data type are similar to how a stack of books
can be manipulated in real life.

Function Functionality

push(node) Adds the node to the front

top() Returns the top node

pop() Removes the last node

empty|() Return True if the stack is empty

Stacks are also reffered to as Last-in-First-Out or LIFO Queues.
As they are abstract, they may be implemented as follows:

3.4.1 Implementing Stacks using Arrays

It can be seen quite easily how a stack can be implemented using
an array. However, one major constraint in using arrays is that the
maximum size of the stack should be known. This is because
the size of an array cannot be modified once it has been allocated. (A
work-around would be to use Dynamic Arrays, but more on that later.)

The pseudo-code for the above functions would be as follows:

def Push(node new) :
if free = capacity
return False;
val [free] « new;
free < free + 1;
return True;

def top():
return val[free — 1];

#Here, Val is the array storing the nodes
#free is an integer showing where the next free
space 18

23

14
15
16
17
18
19
20
21
22
23
24

3 DATA STRUCTURES

def pop():
if empty():
return False;
val [free — 1] < None;
free <« free — 1;
return True;

def empty () :
if val[0] = None:
return True;
else:
return False;

We can clearly see from the above code that stacking fails if the
capacity is exceeded. Also, notice that all the functions take O(1) time
to complete.

3.4.2 Implementing using Linked Lists

Linked lists have an advantage over arrays because the size is indefi-
nite. However, keep in mind that we are using a singly-linked list with
a tail pointer. If the tail pointer had not been present, the operations
would’ve become O(n).

Pseudo-code is as follows:

def push(node new) :
#Changing pointer of last node
((tail — last_node).next) < new;
#changing the tail pointer
tail < new;

def top():
return (head — first_node);

def pop():
if empty():
return False;

24

3 DATA STRUCTURES

13 else:
14 head + head.next;
15 return True;
16
17 def empty () :
18 if head = Null;
19 return True;
20 else:
21 return False;
3.5 Queue

This is similar to a real-life queue, in the fact that the people are
put into a line and the first one in is the first one out; FIFO Queue.
This is also an abstract data type. The functions in this are similar to
that of a Stack, so we will not delve into much detail about the pseudo
code here.

Function Functionality

push(node) Adds the node to the front

top() Returns the top node

pop() Removes the FIRST node
empty|() Return True if the stack is empty

3.5.1 Circular Queue in Arrays

The general pseudo code for the pop() in array would be:

1 def Pop():

2 result < val [0];

3 1+ 1

4 while 1 < capacity:

5 val [i—1] « val[i];
6 1 4= 141
7 return result ;
However, this would take O(n) order of time to be done. A faster

way is to use a HEAD and a TAIL pointer to point where the queue
starts and where the queue ends.

25

3 DATA STRUCTURES

def Pop():
result <« val[tail];
Delete «+ val[tail];
cycle(tail);
return result ;

#Cycle() increases the value of tail by one
and if tail = capacity, it makes it’s value 0

This method makes the function to follow O(1) time, and is thus
faster.

3.6 Tree

As we all know, trees are used extensively in the representation of
data. They consist of a node, and contain subsequent smaller branches
which lead downwards. Formally in computer science, trees are recur-
sively defined as follows:

Tree is either empty OR points to nodes with smaller trees.

Some terms are to be defined before we proceed further:
e Root: The topmost node of the tree
e Child: Immediate node(s) below the current node
e Ancestor: All the modes above the current node
e Descendants: All the nodes below the current node
e Sibling: Nodes with the same parent
e Leaf: Nodes with no children
e Level: (Depth from the root) + 1
e Height: (Max distance from the leaves) + 1
e Forest: Collection of trees

A Binary Tree is a tree in which each node has a maximum of
two sub-nodes. A binary tree is very simple, yet is VERY powerful.

26

1

1 O T i W N

o

3 DATA STRUCTURES

3.6.1 Traversal through a Binary Tree

As the name suggests, traversal means travelling. This topic refers to
how we may travel through the tree and obtain the data in the nodes
for further usage. The two main types of traversal are:

1. Depth First
2. Breadth First

Depth First Traversal

This type of traversal has the program running through the binary
tree through each of the consecutive branches. The pseudo-code for a
function which prints elements traversing in this way would be:

#Node is a class with the stored integer
pointers to the left and right side.

def PrintTreeElem (node elem):
if left is not NULL:
PrintTreeElem (left) ;
print stored;
if right is not NULL:
PrintTreeElem (right) ;

Notice that we are printing the elements of Left node first, then the
node itself, then the right node. This manner is called InOrder. If we
print the node itself first, it is called PreOrder, and if we print it last,
it is called PostOrder.

Breadth First Traversal

This type of traversal implies that we are going to be printing out
all the elements at the same level from the root node first, and we then
start the process again with the nodes at the next level.

27

S Ot

~ O O = W DN =

3 DATA STRUCTURES

The Pseudo-code for Depth First Traversal is as follows:

def Breadth(node root):
queue q;
q.add(root)
while q not empty:
write q[0], q.pop()
q.add(left), q.add(right)

Also, understand that this works not only for a binary tree, but also
for a general tree. The pseudo code for a general tree would be:

def Breadth(node root):
queue q;
q.add(root)
while q not empty:
write q[0], q.pop(
for subnode of [0
q.add (subnode)

)
]:

This is how breadth first traversal works. We can use other forms of
storage such as an array, or a linked list in place of a queue.

3.7 Dynamic Arrays

The arrays which we have discussed earlier are ”static” in nature.
That is, they cannot be modified with regards to their size. Once their
size has been set, they become fixed. A logical way around this to make
a "Dynamic” array.

These aren’t necessarily abstract, and they are implemented in most
languages. For example, Dynammic arrays in C++ are included in the
#include <vector> standard library, and in python we only have a
Dynamic array.

The append function, in particular needs modification as we can
see in the pseudo code below. The size of the array is doubled, and the
elements are copied.

28

1
2

3 DATA STRUCTURES

#Dynamic array for storing integers
def append(int x):

if head < capacity:
val [head] + x

else:
n_val[2% capacity |
n_val[0, 1.. (capacity — 1)] « val
n_val [capacity] + x
capacity < 2xcapacity

3.7.1 Amortized Time Analysis

We can easily look at the code and say that the time taken for
appending the new element is of O(n) order. This is because all the
elements have to be copied over to the new array. This seems wrong,
as an array, by definition, must have Constant Time access.

Are we really right in thinking about the time to be O(n) order?
We can look at an Amortized analysis, or in more common terms,
average analysis of the time.

Amortized Analysis tells us to take the average of the time taken for
n consecutive operations. For the appending function in the dynamic
array, it shall be:

=Yoy + 0 O

n n

Therefore, we can see that although the max time taken for appending
a new integer is O(n), on average, dynamic arrays still have Constant
Time Access.(They wouldn’t be called arrays otherwise)

29

O —

ot

=~

8
9

3 DATA STRUCTURES

3.8 Priority Queues

A priority queue is an abstract data type in which every element is
assigned a priority, and the ones with the highest priority are extracted
first. A real-life analogy to this would be how some airplane tickets have
"classes”, and the classes with the higher priority are allowed to board
first.

The elements in a priority queue must be akin to elements in a bag.
The elements need not necessarily be ordered inside the bag, but the
following functions must be performable.

Function Functionality

Inserts a node into the bag with the

insert(node, priority) eiven priority

extract() Returns the node with highest priority
pop() Deletes the highest priority element

The time taken for the functions is our indication of how good the
data type has been implemented. We shall see some Naive Implemen-
tations and then a full fledged implementation of the Priority queues.

3.8.1 Naive Implementation - Arrays

We could easily use a dynamic array to store a priority queue. The
first element of the dynamic array stores the element with the highest
priority.

The pseudo-code for the above two functions would be as follows:

def extract():
return val [0]

def insert (node, priority):
for i from 0 to n:
if (val[i].pri < priority):
val[i, (i+1)..] < val[(i—=1), i..]
val [i —1] + node
return

30

3 DATA STRUCTURES

However, notice that the runtime for insert(node, priority) is of
the order of O(n), because in the worst case scenario, all the elements
would need to be moved forward. The next type of implementation
would take care of this issue.

3.8.2 Implementation using Heaps

A heap is a binary tree in which the left and right sub-nodes of a
node are smaller than or equal to the parent node. We can easily see
that a heap could be used to represent a priority queue, with the root
being the element with the highest priority.

Before we talk about the implementation of the above functions, let
us first discuss the ways in which a wrong heap can be corrected. For
example, in the above tree, if 11 and 42 were replaced with each other,
we would need to have a method to correct the heap. ShiftUp(node)
and Shift Down(node) are the functions implemented for this purpose.

31

N =

{

s
o

-~ O

> ot

oo

3 DATA STRUCTURES

def ShiftUp (node):
if node.parent.pri < node.pri:
swap node and node.parent
ShiftUp (node. parent)
else:
return
#ShiftDown will be implemented in the similar
way

Now that these both functions are defined, let’s discuss how pop()
function would work. Well, instead of directly deleting the root and
being left with two sub-trees, we swap the place of the root with any
random leaf of the tree, and then employ ShiftDown() for the new
root. The pseudo-code for this would look like:

def pop():
temp < root
while temp.left is not null:
temp < temp. left
#temp is now the left most leaf
root < temp

#replace root with temp
ShiftDown (root)
return

This is much better than the dynamic array implementation because
this takes O(height) time to compute, compared to O(n). However, this
requires our tree to be somewhat branched out, because that would en-
able the tree to store the maximum number of nodes with the minimum
height.

Definition. A binary tree is said to be complete if all the levels of the
tree are completely filled; except possibly the last one. The last level
of the tree may be incomplete, but the present children must be filled
from the left to the right.

32

3 DATA STRUCTURES

Therefore, by modifying our codes appropriately to keep the binary
tree complete, we can have the above functions run with the runtimes
of O(logy), which is much better than the linear implementation that
we had for the dynamic Arrays.

3.9 Hash Tables

Problem Statement. You are the manager of a server, and you want
to know the number of different IPs connecting to your server in the
previous 60 minute interval, and also maintain a count of how many
times the IP has connected.

This is a fairly common problem faced by servers, which we shall
attempt to tackle now. IPs are generally given as a.b.c.d where 0 <
a,b,c,d < 255. For example, 101.23.40.120 is a valid IP.

Each number is less than 256, meaning each number can be stored
in 8 Bits. This implies that the IP as a whole can be stored in 32 Bits.
Let’s try to tackle this problem using different data structures and see
why the need for a new data structure has risen.

3.9.1 Implementing using Arrays

Because each IP takes up 32 Bits, all IPs can be stored in an array
whose size is 232, The mapping from the IP to the array address (n)
can be done as follows:

n=d+c-22+b-2044.2%

All the values in the array will be initialized to 0. Everytime an IP
accesses the server, we would increase the value of the corresponding
number in the array by one. This is good, as all the operations would
take a O(1), constant amount of time, which is what we need.

However, one BIG disadvantage of using this would be the memory
it requires. We need to store a LARGE number of values without
actually using most of them, because not all the IPs would connect
to our server(obviously). This problem is worsened if we use IPv6,
increasing the memory needed astronomically.

33

J O Ot

oo

3 DATA STRUCTURES

3.9.2 Implementing using Linked Lists

Because of the draw backs of arrays as show previously, we might
be tempted to use Linked Lists. The nodes of the linked list would be
storing the IP and the number of times that IP has connected to the
server.

Pseudo-code which would be needed to run every time a new con-
nection is detected would be:

#Head refers to the head pointer
def update (IP):
temp < head
while temp.next is not NULL:
if temp.IP = IP:
temp . count++
return
else:
temp < temp.next

That is, we need to check through the ENTIRE linked list to see if the
IP has been repeated already. This takes O(n) time, and needs to be
dome everytime. So although Linked lists saves us space, we lose the
speed at which arrays were able to compute the values.

3.9.3 Best of both - Hash Tables

Simply speaking, Hash-Tables are arrays containing lists. We take
all the IPs and we mathematically divide them into groups of ap-
proximately equal size. This is usually done by a function called the
Hashing — Function.

The Hashing function takes the value of the IP and it returns the
index of the array where it would be located in. Because the array
index is obviously smaller than the total number of IPs, some IPs would
return the same index when the Hashing-Function is passed. This is
called as Collision.

34

3 DATA STRUCTURES

3.9.4 Collision Handling

This refers to how Collisions are handled. In this case, if there is
already a non-empty list at the array index, we scan this list. If the IP
is already present in the list, it means that the IP has reconnected, so
we can increase the count by one. If it isn’t present we can append this
IP with it’s counter as one.

However, if the array element is empty, simply create a new empty
list at that index and append this IP with it’s counter as one. We can
clearly see that this would be faster than only using arrays or lists.

3.9.5 Time Calculation and Increasing Speed

The time taken to look up whether an IP has connected would involve
the following steps:

1. Calculate the Array index from the Hashing Function - O(1)
2. Look-up the array index - O(1)

3. Scan through the list and check whether the IP is present - O(length—
of — list)

Therefore, the total time taken for looking up the IP would depend on
the number of elements in the list. This is faster than arrays and list
which would take O(n) time. However, if our hashing function is bad,
then all the IPs would be grouped into a sinle list which makes all the
developments that we've done so far worthless.

Therefore, our Hashing function should distribute all the IPs uni-
formly so that the possibility for the is minimized. This involves multi-
ple factors, and the definition of our Hashing Function determines how
efficient our Data structure is, overall.

35

3 DATA STRUCTURES

3.10 Binary Search Trees

Suppose that we would like to be able to do a ”Local” search for
an element. That is, we would like to return all the elements withing
a corresponding range; or the nearest neighbours of the given element.
We also need to be able to insert new elements and remove already
existing elements in the data structure.

3.10.1 Naive Implementation using Hash Tables

As we’ve discussed previously, Hash tables make inserting and delet-
ing new elements fairly simple. However, the range search and finding
the nearest elements would prove to be difficult as the elements which
we are looking for need not be in the same part of the main array.

This would force us to search through the entire data structure and
thus, would take a time of the order of O(n). This is very much not
ideal, and we thus look upon other data structures for this reason.

3.10.2 Implementation using Lists and Sorted Arrays

Sorted arrays work better in this case, as we can use Binary Search-
ing for employing the Ranged Search and the Nearest Neighbours func-
tions, as it takes only O(logy) order of time. However, it fails for insert-
ing new elements because all the elements need to be shifted inorder
for the array to remain sorted.

Linked Lists are immediately out of the picture, because we cannot
aply a Binary search on them. This causes us to manually search the
entire data structure, again taking O(n) time.

However, these gripes feel similar to the ones we had when the need
for trees had arisen. We shall therefore look at how a Binary tree is
more efficient than all the data structures that we have studied so far.

3.10.3 Implementation of the Binary Search Tree

As the name suggests, a Binary Search Tree is a Binary tree with
a special property that the left child of any node is smaller than the

36

N —

© 00 1 O Ot

10

12
13
14
15
16
17
18
19
20
21
22
23
24

3 DATA STRUCTURES

parent node and the right child of any node is greater than or equal to
the parent node.

The pseudo-code for the above mentioned function, namely,
RangedSearch(), along with some other important functions is shown
below.

#next () gives the next biggest element stored
def next(node N):
if N.right is not NULL:
temp < N.right
while temp.left is not NULL:
temp < temp. left
return temp
else:
#return nothing if N is the largest
if N.parent is NULL:
return
temp < N. parent
next (temp)

#Using next (), we can write RangeSearch ()
#val is a list storing the results
def RangeSearch(node low, node high):
if low is in tree:
val . append (low)
low < next (low)
while low less than high:
val . append (low)
low < next (low)
return val

The best part of doing stuff in this way that the run time of our
algorithm here is dependent only on the height of the tree, that is, if
our tree is balanced, the runtime is O(logy). We can also quite easily
see that the time taken for adding and deleting a node from this tree

37

3 DATA STRUCTURES

would also be dependent on the height of the tree, thus making it’s
runtime logarithmic as well.

Therefore, in order to have a good run-time, our trees need to be
shallow. Do not confuse the properties mentioned after this with the
properties discussed with heaps, as they are two completely different
data types.

3.10.4 Balancing Trees - AVL Property

Definition. A Binary Tree is said to be AVL if the heights of both the
children of any node(if the node has two children) differ atmost by 1.

We can very clearly see that Binary trees which satisfy the AVL
property are going to be shallow. Inorder for AVL property to be
satisfied, we need to define some functions for us to be able to modify
the Binary tree.

The functions which we would need to define would be Rot_L(node)
and Rot_R(node), and their functionality would be as shown in the
following figure:

(X) (Y)
Q — A X
/A

Implementing this feature is pretty simple, we need to check the tree

38

ot

4 ALGORITHMS ON GRAPHS

after every insertion or deletion for the AVL Property. If the AVL
property is not satisfied, we can use the rotate functions accordingle.

The heights need not be calculated on the go, but rather, they can
be stored in the node itself. This would further speed up the process
and make the entire tree faster. However, note that whenever any
modification to the tree is done i terms of its structure, like, rotations,
insertions and Deletions, all the values of height need to be recomputed.
The pseudo-code for this would be as follows:

#Note that Dynamic Programming can’t be used
#As nothing is repeated necessarily
def Calc_Ht (node root):

height < 1 + max(Calc_Ht(root.left),

Calc_Ht (root.right))
return height

4 Algorithms on Graphs

Definition. An Undirected Graph is a collection of vertices (V'), and
Edges (F) which connect pairs of Vertices.

The above given definition is how graphs are defined formally. The
vertices may be represented by points, and the edges may be repre-
sented by lines connecting the points. Some examples of Graphs in
practical usage would be how social networks are represented and the
such.

Edges generally connect two different Vertices but this need not
always be the case. An edge which connects a vertex to itself is called
as a "Loop”. Similarly, We can have multiple vertices between two
vertices, but they are not considered generally.

39

4 ALGORITHMS ON GRAPHS

The above image is an example of a graph in which the vertices
are A, B, C and D and the edges are the lines connecting the vertices.
Notice that all the vertices need not be connected with each other; and

there may be some vertices which are not connected to any vertices at
all!

4.1 Representing Graphs

We have seen in the above image how graphs may be represented VI-
SUALLY. However, they also need to be represented in such a manner
that operating with them is easy, fast and efficient. Some of the ways
in which Graphs can be represented is as follows:

1. Edge List
2. Adjacent Matrix
3. Adjacent List

Edge List is pretty self-explanatory. All the edges are stored in a
list, and when required, they can be looked up from the list.

Adjacent Matrix is an |[V| x |V| matrix in which all elements
are initialised to Zero. The cell (1,2) is marked as 1 if there id an
edge between Vertex 1 and Vertex 2. Notice that this array must be
Symmetric.

40

4 ALGORITHMS ON GRAPHS

Adjacent List is also pretty self explanatory. For every Vertex,
we store a corresponding list as to which vertices are adjacent to it.
Therefore, if we have |V/| vertices, we would have |V| corresponding
lists as well.

Storage Method | Edge? List Edges | List Neighbours
Edge List O(F) O(F) O(F)

Adjacent Matrix | ©(1) O(|V]?) o(|V])

Adjacent List O(deg) O(F) O(deg)

We will be looking at an Adjacent list From here on, as it’s easy
enough to implement and it is more efficient in the broader sense.

41

4 ALGORITHMS ON GRAPHS

4.2 Computing Runtime

We’ve previously talked about how runtimes of an algorithm may be
computed. We’ve been using the Big — O Notation ever since, and it
has worked quite well till now. However, ALL the runtimes that we’ve
discussed till now only rely on ONE variable, the size of the input,
which makes comparision easy. That’s no longer the case here.

In graphs, the run time of the algorithm is going to depend on both
|V| and |E|. This makes it tough because we cannot really compare two
algorithms whose runtimes are O(|V|2) and O(|E|). Thus, we define
another classification of the graphs:

1. DENSE: A graph is said to be Dense, if mostly all the vertices
are interconnected with each other by a vertex. In a dense graph,
[El = |V

2. SPARSE: A Graph is called Sparse, if the weaving isn’t very
complex. Here |E| ~ |V|.

(a) dense graph (b) sparse graph

42

o J O Ot

10
11

4 ALGORITHMS ON GRAPHS

4.3 Graph Exploration

This is pretty self-explanatory. We shall aim to write an algorithm
which can "explore” our graph and see how different vertices are con-
nected to each other. It is intuitively the first step do be done as any
other complex algorithm tat we’d write would surely use this as it’s
subpart.

Before we write an algorithm for this, let us formally define what a
"path” is in an Algorithm.

Definition. A Path is a collection of n vertices like {vy, v9,..v,} such
that all (v;,v;41) are connected by an edge.

We shall first present the Pseudo-code for an algorithm which, when
presented with a node, returns a list containing all the reachable nodes
from the input node.

#discover is the list storing the nodes
#node has bool visit , which is made True once
visited

#neighbours of a node stored in list adjacent

def reach(node s):
s.visit ¢ True
discover .append(s)
for temp in s.adjacent:
if temp.visit is False:
reach (temp)
return discover

Now that reach() has been properly defined, let us write the pseudo-
code for a Depth-First Search Algorithm. This need not do much as of
now, as it can be modified later to suit our needs. As of now though,
this algorithm should be able to traverse and return all the vertices
present in the given graph BY TRAVERSING THE GRAPH.

43

N —

ot

S © 00 N O Ot

—_ =

—_
N —

4 ALGORITHMS ON GRAPHS

#nodes is the list which stores all nodes
def DFS() :
create empty list called nodes
for node in tree:
if node.visit is False:
nodes . append (reach (node))

Understand that the algorithm’s run-time would be of the order O(|V |+
|E|). It’s simple enough to be seen directly without any outright ex-
planation. This is Linear Time in case of Graphs.

4.3.1 Connected Components

Connected Components are like ”islands” when we look at a pictorial
representation of graphs.

Definition. A set of vertices () is said to be a Connected Component
if for every u,v € S, There exists a path connecting u and v.

Notice that this relation is Equivalence in nature. We can modify
our DFS() algorithm to easily count the number of Connected Com-
ponents in the given graph, and also find out which nodes belong to
the same connected component. We first add a new variable called

cc in the node to store the label of the connected component. The
Pseudo-Code is:

def DFS() :
#create label here
num = 1

create empty list called nodes
for node in tree:
if node.visit is False:
nodes . append (reach (node, num))
#increase label
num < num + 1

44

13
14
15
16
17
18
19
20
21

4 ALGORITHMS ON GRAPHS

def reach(node s, int num):
s.visit < True
s.cc < num #storing the label here
discover .append(s)
for temp in s.adjacent:
if temp.visit is False:
reach (temp)
return discover

Now, once the labels have been set, we could simply scan through
the vertices and pick out the ones we need. This algorithm also takes
O(|V| + |E]) time as nothing has changed significantly, and only con-
stant time operations have been added.

4.4 Directed Graphs

The graphs that we have discussed so for have no directional compo-
nent for their edges. This means that the edge can be traversed from
either end to the other. However, if an edge only allowed for travel in
one direction, then the graph would be called a ”Directed Graph”.

If we think about it, Directed graphs are more useful in applica-
tions of road mapping and the such because not all roads would allow
passenger to move in both the directions freely. Thus, defining these
graphs is important and necessary.

We can simply modify the definition of Adjacent list to account for
this. The vertices which are present in the adjacent list of a vertex v
all have a directed edge from v to the corresponding vertex.

1. SINKS: The vertices which only have edges pointing towards them.

2. SOURCES: The vertices which only have edges pointing away
from them.

45

4 ALGORITHMS ON GRAPHS

4.4.1 Linear Ordering

A Linear arrangement of the vertices in the given graph which satis-
fies the directional orders in the graphs is called as a Linear Ordering.
The following image makes it more clear:

at breakfast Go to work
7:20 7:30

It can be clearly seen that Linear Ordering of a Directed Graph is
possible IFF there are no cycles present in the graph. A directed

Graph which has no cycles present in it is called as Directed Acyclic
Graph.

Algorithm for Linear Ordering a graph

The logic behind this is pretty simple. We first find the a sink in
the graph. (A DAG must have atleast one sink) We then append this
graph to the last of the LO. We then remove this vertex from the graph
and iterate till there are no more vertices left in the Graph.

46

4 ALGORITHMS ON GRAPHS

Strongly Connected Components

Simply put, this is similar to the Connected-Components that we
described earlier for undirected graphs, but for Directed Graphs.

4.5 Dijkstra’s Algorithm

As we can realise, graphs can be used pretty easily to represent a
map of an area with the edges representing nodes. The next logical step
would be to develop an algorithm for finding the shortest path between
two vertices. The problem statement has been stated properly below.

Problem Statement. Given a Graph and a starting vertex S. Fach
edge has a corresponding “weight”, i.e., the time taken to traverse the
edge. The weight is Non-Zero. Find the minimum time it would take
to reach ANY wvertex from the vertex S.

Dijkstra’s Algorithm is a simple way of achieving this. We have a
variable in each of the vertex which stores the minimum distance from

S, let it be called dist.

1. We first instantiate dist in S to be 0, and then all the others are
instantiated to oo.

2. The vertices which have their dist figured out are stored in a
set called R. Calculate the possible values of dist for it’s neigh-
bours(which are not in R) by using dist of the current vertex.

3. If the calculated value is smaller than what is stored, we replace
the stored with the calculated value.

4. Choose the vertex which is not in R, which has the lowest value of
dist to be the current vertex and iterate from step 2.

5. When all belong to R, all the distances are known.

We can go further and add another variable called prev which points
to the node from where we arrived at the current node. This can be
useful if we are trying to obtain the path in which our algorithm travels.
The pseudo-code would be:

47

1
2
3
A
5)

6

4 ALGORITHMS ON GRAPHS

G is the Graph, S is the Source
def Dijkstra (G, S):
S.dist «+ 0
V< S
#infinity refers to very large number
rest all Vertices set dist « infinity
create PriorityQueue(Q) and store all vertices
while Q is not empty:
for all w neighbours of v:
if v.dist + E(v,w) < w.dist:
w.dist < v.dist + E(v,w)
#ExtractMax () returns and removes least priority
v < ExtractMax (Q)

From this we can calculate the minimum distance from the mentioned
source to any vertex in the entire graph. This algorithm forms the basis
of another efficient algorithm called the A* — Algorithm which can be
used to easily find the shortest distance between any two given vertices.

4.6 A* — Algorithm

As discussed earlier, this algorithm is just a small variation of the Di-
jkstra’s Algorithm that we’ve discussed earlier. This algorithm involves
a Directed Search, meaning that the algorithm tends to prioritize the
choices which take it closer to the target amongst all the choices.

Definition. Potential Function is a function which maps all the
vertices in the graph to a numerical value. It is denoted by 7 (v).

Now that a Potential function has been defined, then next logical
step is to use this potential function to re-define the edge weights of
our graph again. Keep in mind that we are talking about a directed
graph here.

The redefined edge weight for an edge from a vertex w to another
vertex v is given by:

Le(u,v) = l(u,v) — m(u) + 7(v)

48

4 ALGORITHMS ON GRAPHS

This poses another constraint; by definition, all the new edge weights
must also be non-negative. The Potential Functions which satisfy this
condition are said to be Feasible.

Let s be the Starting Vertex and t be the target vertex. There
exist many paths, and the i path is denoted by P;. Notice that after
redefining all the edges, the Path Length shall be:

lx(P) = 1(P;) — m(s) + m(t)

That is, the path lengths only change by a constant. We can therefore
also conclude from this that the Shortest path is the same after
conversion, because all the paths differ from the original by a constant.
Sure, the length has changed, but the path is still the same.

Therefore, we can apply Dijkstra’s Algorithm to this modified graph
and still end up with the shortest path for the original graph. If we were
required to calculate the minimum length between the two vertices, we
can get that from the new graph as well, as it differs by a constant.

49

5 STRING ALGORITHMS

5 String Algorithms

Algorithms on Strings have an immense importance in our daily lives.
Search Engines use these algorithms to provide us with the results which
are related to our search, after scanning through Terabytes of Webpages
in an instant.

These algorithms can also be used in Bio-informatics, to check how
similar the DNA of two species is, or where the DNA of a person with a
genetic disease and a healthy person differ. This shall involve scanning
through a large number of strings, and the methods to do o shall be
discussed below.

The Human Genome project, consisted of DNA from humans to be
extracted and broken up randomly by enzymes. The fragments are then
analyzed to get the sequence of the Amino Acids making up that part.
Then an algorithm is tasked with scanning all these pieces and figuring
out where each piece should be located, much like a jigsaw puzzle, in
which the pieces can be overlapping, are randomly generated, and the
final solution is Millions of Amino Acids long. This is where these
algorithms come into play.

We shall look at some ways of checking whether given strings are
sub-strings of a larger string, in an efficient manner.

5.1 Pattern Matching Algorithms

Problem Statement. Given a main string S, and n other strings p,,
check which of the p, are substrings of S, and where they are located in
the main string as well.

The easiest solution would be to simply check for the first letter
of the main with the first letter of p;. This is the simplest solution,
and it DOES work, but its VERY slow. The pseudo-code for the naive
algorithm would be as follows:

20

—_

© 00 ~J O Ul = W N

10

—_
—_

12
13
14

5 STRING ALGORITHMS

#P[n] is the array with all the strings to be
checked

#S[0] refers to first letter of string
#result is the array with the substrings
def Naive_Matching (S, P[n]):
result < []
for i in range(n):
j+ 0

while True:
i S[j] 1= Pli][j]:
break
if j = len(P[i]):
result .append (P[i])
j+—] +1
return result

Let’s look at how this algorithm performs time-wise. It can be clearly
seen that the time would be of the order O(len(S) -n), and in the case
of the human genome, this would never get done for obvious reasons.

One reason why this algorithm is so slow is that we are needed
to scan through the same string multiple times. We can modify the
approach to be so that we are required to scan the string only once.
The following method talks about this approach.

5.1.1 Trie-Matching the Smaller Strings

A 7Trie” is a way of grouping together all the smaller strings effi-
ciently and simply. A Trie is basically a Tree which stores the strings
with the common alphabets acting as nodes. For example, the below
structure is how the following sub-strings are stored:

ananas, and, antenna, banana, bandana, nab, nana, pan

51

5 STRING ALGORITHMS

d

O~ 0 0O

O
O0—0O—0

O O
00> 0>020%0~°

O O0>0

d

0" 0*°
OO0 0°0"0

O

It can be seen clearly that this method would save a lot of time as we
would be checking all the sub-strings at once, and this would obviously
more faster. But would this be enough? Actually no, because we would
still have the run-time would be O(len(S) - max(PJi])).

The time for this still be very high, and thus we are required to
think of more efficient methods.

52

5 STRING ALGORITHMS

5.1.2 More Efficient Trie-Matching

Instead of putting all the strings to be searched in a Trie, lets instead
put the ORIGINAL STRING, i.e., S, in a Trie. In the above example,
suppose S = "PANAMABANANAS”.

We then put all the possible sub-strings of S into a Trie, as shown
below. The sub-strings of S would be ’"PANAMABANANAS” 7 ANAM-
ABANANAS”, and so on. The Leaves of the Trie are denoted by $ sign,
and it also stores the number where the Substring is located. This al-
lows us to pin-point where the particular substring is present in the
original string.

Q
@)
O

b
P ERT RO et D)
o 4 Q sob m Qo
nO aO m 'ﬁo 11 aO Q mé OS amO 8
Q0 O o' oo 6 o 0,
@8 SNl o o i o7 o B0V Wi o Tl o (O I
L b s g 4 O b S 10 O
ao no ao SO no ao ao so a
ol NS o7k o I o KLY (5 o (o J.C
i n 2 7 : a & 8 O
$O O ao sO O O a
off e O EEE Q
5 n > O n ”O
S’O ao O aO o d
S O 6 aO @)
)y OF - s
oy 0 @ 5
O e @ ©,
1 2 0

23

5 STRING ALGORITHMS

Although this would make matching VERY fast, the space needed
to store the sub-string is HUGE. By some quick math, we can see that
the space needed to store a string of size n would be O(n?); which is
completely impractical.

We overcome this problem pretty simply. First, storing each let-
ter of the word "BANANAS” in the left-most branch in a different
node is a huge waste of space. We can simply store the entire word
"BANANASS” in one leaf itself. Doing this to the above tree gives us

this:
2 (=)
2 O
(\38 p‘?! SS
‘0303 é? Ss O %’ 3':a’cs & ab df?a O
o & m\ 1 % %, 7 Nass 12
2 y I
5 ¥ O o Xy ®
&3 & . w« O 0 Sneg ©O
\0307’ nass 6 4 _0130% nasS 0
L0 0 G &L ()=
1 7 9 2 8 10

This STILL doesn’t solve our problem, as we still need to store the
entire sub-strings. However, we can work around this, pretty easily.
Because a string can be accessed in constant-time, we can simply store
the starting index and the length of the string. This DRASTICALLY
reduces the space needed to store the string. The modified Trie is as
follows:

o b T
(32 12,20 e g
X Fan T4 12
O L 11 ® 7]
s O O
3 O & O O Ky > O
04 ¥ g 4 NAoa %9 0
OO0 © OF OfF @
1 7 9 2 8 10

o4

6 REFERENCES

6 References

e Coursera’s Specialization Course
e Coursera’s Data Structures and Algorithms Course
e Coursera’s Courses on Graphs and Strings

e Tutorials by TutorialsPoint

95

